首页 / 新闻中心 / 正文

广安Q345qCE板条当日行情Q345qCE板条

来源:广安企业旺旺日报网 更新时间:2024-06-09 05:28:44
版权声明:本文首发自企业旺旺,请随意转发,本文编辑字数9040字,预计阅读时间,5分钟。
广安Q345qCE板条当日行情Q345qCE板条信息由本站提供,newsGPwFmT6本条信息由商家新发布,致电咨询广安Q345qCE板条当日行情Q345qCE板条相关信息,咨询时请告知信息由企业旺旺提供.
基本参数
  • 现货加工

    激光切割

  • 钢材质量

  • 货物配发

    送货到厂

  • 质量

    正品

  • 加工服务

    定制

  • 用途

    机械加工





通常硫是有害元素,使钢热脆性大,含量限制在0.05%以下。但是易切削钢的硫含量高,可达0.08%~0.40%。
钢指含碳量小于2%的铁碳合金。根据成分不同,又可分为碳素钢和合金钢。根据性能和用途不同,又可分为结构钢、工具钢和特殊性能钢。
按化学成分分 (1)碳素钢 碳素钢是指钢中除铁、碳外,还含有少量锰、硅、硫、磷等元素的铁碳合金,按其含碳量的不同,可分为:1)低碳钢——含碳量wc≤0.25% 2)中碳钢——含碳量wc0.25%~0.60% 3)高碳钢——含碳量wc>0.60%高碳钢一般在军工业和工业医疗业比较多 (2)合金钢 为了改善钢的性能,在冶炼碳素钢的基础上,加入一些合金元素而炼成的钢,如铬钢、锰钢、铬锰钢、铬镍钢等。按其合金元素的总含量,可分为: 1)低合金钢——合金元素的总含量≤5% 2)中合金钢——合金元素的总含量5%~10% 3)高合金钢——合金元素的总含量>10%


  1. 奥氏体的形成
奥氏体化——若温度高于相变温度钢,在加热和保温阶段,将发生室温下的组织向A的转变,称为奥氏体化。
奥氏体形成的四个步骤:
1)奥氏体晶核的形成; A晶核通常在珠光体中F和Fe3C相界处产生;
2)奥氏体晶核长大;(3)残余渗碳体的溶解;(4)奥氏体的均匀化
共析钢——加热到Ac1点相变温度;
亚共析钢——加热到Ac3点相变温度以上;
过共析钢——理论上应加热到Accm以上,但实际上低于Accm。因为加热到Accm以上,渗碳体会全部溶解,奥氏体晶粒也会迅速长大,组织粗化,脆性增加。加热和冷却时相图上临界点位置,如图所示:
  1. 奥氏体晶粒度和奥氏体晶粒长大及其影响因素
1、奥氏体晶粒度
1)起始晶粒度——室温下各种原始组织刚刚转变为奥氏
体时的晶粒度。
2)实际晶粒度——钢在具体的热处理或加热条件下实际获得的奥氏体晶粒度的大小。分为10级,1级粗(锻造常温调质晶粒度一般要求5-8级,锻造余热调质晶粒度一般要求大于等于2级)。
3)本质晶粒度——表示奥氏体晶粒长大的倾向性。不表示晶粒的大小。
本质粗晶粒钢:奥氏体晶粒度随着加热温度的升高不断地迅速长大。 (如图6-3) 图6-3
本质细晶粒钢:奥氏体晶粒度只有加热到较高温度才显著长大。
2、奥氏体晶粒长大及影响因素

钢材中除主要化学成分Fe铁以外,还含有少量的碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)、氧(0)、氮(N)、钛(Ti)、钒(V)等元素,这些元素虽含量很少,但对钢材性能的影响很大。
碳是决定钢材性能的重要元素,它影响到钢材的强度、塑性、韧性等机械力学性能。当钢中含碳量在0.8%以下时,随着含碳量的增加,钢的强度和硬度提高,塑性和韧性下降;但当含碳量大于1.0%时,随含碳量增加,钢的强度反而下降。一般工程用碳素钢均为低碳钢,即含碳小于0.25%,工程用低合金钢含碳小于0.52%。
钢中有益元素有锰、硅、钒、钛等,控制掺入量可冶炼成低合金钢。钢中主要的有害元素有硫、磷及氧,要特别注意控制其含量。磷是钢中很有害的元素之一,主要溶于铁素体起强化作用。磷含量增加,钢材的强度、硬度提高,塑性和韧性显著下降。特别是温度愈低,对塑性和韧性的影响愈大,从而显著加大钢材的冷脆性。磷也使钢材可焊性显著降低,但磷可提高钢的耐磨性和耐蚀性。硫也是很有害的元素,呈非金属硫化物夹杂物存在于钢中,降低钢材的各种机械性能。
由于硫化物熔点低,使钢材在热加工过程中造成晶粒的分离,引起钢材断裂,形成热脆现象称为热脆性。硫使钢的可焊性、冲击韧性、耐疲劳性和抗腐蚀性等均降低。氧是钢中有害元素,主要存在于非金属夹杂物中,少量熔于铁素体内。非金属夹杂物降低钢的机械性能,特别是韧性。氧有促进时效倾向的作用。氧化物所造成的低熔点亦使钢的可焊性变差。


  1. 屈服点(σs)
钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的小应力值即为屈服点。
设Ps为屈服点s处的外力,Fo为试样截面面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=10^6Pa,Pa:帕斯卡=N/m2)
2. 屈服强度(σ0.2)
有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2。
3. 抗拉强度(σb)
材料在拉伸过程中,从开始到发生断裂时所达到的大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。
设Pb为材料被拉断前达到的大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。
4. 伸长率(δs)
材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。
5 . 屈强比(σs/σb)
钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。
6. 硬度

联系方式